Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences.

نویسندگان

  • Yu-Ching Chen
  • Yeong-Shin Lin
  • Chih-Jen Lin
  • Jenn-Kang Hwang
چکیده

The support vector machine (SVM) method is used to predict the bonding states of cysteines. Besides using local descriptors such as the local sequences, we include global information, such as amino acid compositions and the patterns of the states of cysteines (bonded or nonbonded), or cysteine state sequences, of the proteins. We found that SVM based on local sequences or global amino acid compositions yielded similar prediction accuracies for the data set comprising 4136 cysteine-containing segments extracted from 969 nonhomologous proteins. However, the SVM method based on multiple feature vectors (combining local sequences and global amino acid compositions) significantly improves the prediction accuracy, from 80% to 86%. If coupled with cysteine state sequences, SVM based on multiple feature vectors yields 90% in overall prediction accuracy and a 0.77 Matthews correlation coefficient, around 10% and 22% higher than the corresponding values obtained by SVM based on local sequence information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Cooperativity of the oxidization of cysteines in globular proteins.

Based on the 639 non-homologous proteins with 2910 cysteine-containing segments of well-resolved three-dimensional structures, a novel approach has been proposed to predict the disulfide-bonding state of cysteines in proteins by constructing a two-stage classifier combining a first global linear discriminator based on their amino acid composition and a second local support vector machine classi...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Prediction of Oxidation States of Cysteines and Disulphide Connectivity

Knowledge on cysteine oxidation state and disulfide bond connectivity is of great importance to protein chemistry and 3-D structures. This research is aimed at finding the most relevant features in prediction of cysteines oxidation states and the disulfide bonds connectivity of proteins. Models predicting the oxidation states of cysteines are developed with machine learning techniques such as S...

متن کامل

Disulfide Bonding Pattern Prediction Using Support Vector Machine with Parameters Tuned by Multiple Trajectory Search

The prediction of the location of disulfide bridges helps towards the solution of protein folding problem. Most of previous works on disulfide connectivity pattern prediction use the prior knowledge of the bonding state of cysteines. In this study an effective method is proposed to predict disulfide connectivity pattern without the prior knowledge of cysteins’bonding state. In previous research...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 55 4  شماره 

صفحات  -

تاریخ انتشار 2004